Xilinx announces new RFSoC devices

On February 21st Xilinx announced new devices aimed for the design of solutions for 5G wireless systems. The announced RFSoC devices will combine existing MPSoC capabilities with integrated ADCs and DACs.

The integrated 16nm-based RF data conversion technology includes:

  • Direct RF sampling
  • 12-bit ADCs at up to 4GSPS, with digital down-conversion
  • 14-bit DACs at up to 6.4GSPS, with digital up-conversion

Current solutions for SDR are typically based on superhet transceivers. This architecture needs:

  • IF stage including LO
  • High speed converters, typically needing fast SerDes (JESD204) to interconnect the processing FPGA to the ADC and DAC

Direct RF Sampling Receiver – Source: Xilinx

Xilinx proposed architecture with integrated DAC and ADC as well as direct RF sampling simplifies and enhances the SDR solution implementation:

  • Reduced noise
  • Reduced power consumption
  • Reduced PCB size and routing complexity

As of the date of this article, there is no public information regarding availability dates and/or device types for the new RFSoCs.

SoC FPGA for IoT Edge Computing

edge_iot
Edge architecture from Fujisoft presented at ISDF 2016

One of the reasons for the explosive growth of IoT is that embedded devices with networking capabilities and sensor interfaces are cheap enough to deploy them at a plethora of locations.

However, network bandwidth is limited. Not only that, but also, the latency of the network can be of seconds or minutes. By the time the sensor data is acquired by the centralized computers, its value for decision making could be lost. In other words, for the IoT solution to be effective, it should not only deliver meaningful data securely (and filter it as much as possible to avoid network congestion), it should also analyze it and act upon it at the origination point of the data. At the very edge of the network.

Continue reading “SoC FPGA for IoT Edge Computing”